Abstract

Synaptic reorganization of mossy fibers following kainic acid (KA) administration has been reported to contribute to the formation of recurrent excitatory circuits, resulting in an epileptogenic state. It is unclear, however, whether KA-induced mossy fiber sprouting results from neuronal cell loss or the seizure activity that KA induces. We have recently demonstrated that certain strains of mice are resistant to excitotoxic cell death, yet exhibit seizure activity similar to what has been observed in rodents susceptible to KA. The present study takes advantage of these strain differences to explore the roles of seizure activity vs cell loss in triggering mossy fiber sprouting. In order to understand the relationships between gene induction, cell death, and the sprouting response, we assessed the regulation of two molecules associated with the sprouting response, c-fos and GAP-43, in mice resistant (C57BL/6) and susceptible (FVB/N) to KA-induced cell death. Following administration of KA, increases in c-fos immunoreactivity were observed in both strains, although prolonged induction of c-fos was present only in the hippocampal neurons of FVB/N mice. Mossy fiber sprouting following KA administration was also only observed in FVB/N mice, while induction of GAP-43, a marker associated with mossy fiber sprouting, was not observed in either strain. These results indicate that: (i) KA-induced seizure activity alone is insufficient to induce mossy fiber sprouting; (ii) mossy fiber sprouting may be due to the loss of hilar neurons following kainate administration; and (iii) induction of GAP-43 is not a necessary component of the sprouting response that occurs following KA in mice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call