Abstract

Systemic lupus erythematosus (SLE) is an autoimmune disorder with immune-complex deposition that affects multiple organs. Previous studies have suggested the involvement of oxidative stress and apoptosis in SLE, but no clear link to etiology has been established. Here we show that mice deficient in a transcription factor responsible for controlling the expression of numerous detoxification and antioxidant genes develop an autoimmune disease with multiple organ pathologies that closely resembles human SLE. Aged female mice with a knockout of nuclear factor, erythroid-derived 2, like 2 (nrf2) are prone to develop antibodies against double-stranded DNA and the Smith antigen as well as IgG, IgM, and C3 deposition in kidney, liver, heart, and brain. Prior to the development of autoimmune antibodies and organ pathology, oxidative damage occurs in the liver and kidney as indicated by the increased levels of the DNA oxidation marker 8-hydroxydeoxyguanosine and the later increase in the lipid peroxidation product malondialdehyde. Gene expression profiles demonstrate an early decrease in numerous antioxidant and detoxification genes in the livers and altered levels of cytokines and T and B cell-specific genes in the spleens of nrf2 knockout mice. These data strongly suggest that a deficiency in detoxification and increased oxidative stress can result in the development of a systemic autoimmune disease.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.