Abstract

One of the hallmarks of SLE is the loss of tolerance to chromatin. The genes and mechanisms that trigger this loss of tolerance remain unknown. Our genetic studies in the NZM2410 lupus strain have implicated genomic intervals on chromosomes 1 (Sle1), 4 (Sle2), and 7 (Sle3) as conferring strong lupus susceptibility. Interestingly, B6 mice that are congenic for Sle1 (B6.NZMc1) have elevated IgG antichromatin Abs. This study explores the antinuclear antibody fine specificities and underlying cellular defects in these mice. On the B6 background, Sle1 by itself is sufficient to generate a robust, spontaneous antichromatin Ab response, staining Hep-2 nuclei homogeneously, and reacting primarily with H2A/H2B/DNA subnucleosomes. This targeted immune response peaks at 7-9 mo of age, affects both sexes with equally high penetrance (> 75%), and interestingly, does not "spread" to other subnucleosomal chromatin components. Sle1 also leads to an expanded pool of histone-reactive T cells, which may have a role in driving the anti-H2A/H2B/DNA B cells. However, these mice do not exhibit any generalized immunological defects or quantitative aberrations in lymphocyte apoptosis. We hypothesize that Sle1 may lead to the presentation of chromatin in an immunogenic fashion, or directly impact tolerance of chromatin-specific B cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.