Abstract

Starch is a major component of cereal grains such as wheat. Physicochemical and functional properties of starch affect end-use food quality and nutrients. To improve cultivars that preserve superior starch quality, the genetic foundation of the wheat starch and amylose-lipid complex (ALc, Resistant starch type 5) gelatinization are needed. This genome-wide association (GWA) mapping used 192 wheat genotypes (previously reported) to generate SNPs using an enhanced version of sequencing termed ddRAD on the Illumina Hi-seq X platform and 3696 high-quality influential SNPs were filtered out. The heterozygosity and Fst ranges in five subpopulations were 0.31–0.40 and 0.18–0.30 respectively. Nucleotide diversity and PIC ranged from 0.21 (6A) to 0.32 (2A) and 0.29 (6A) to 0.39 (4D) respectively. The Shannon waiver index was 1.7 and the whole-genome LD decay was 22 Mb at r2 = 0.38. Following FDR, 23 and 8 SNPs showed association with starch properties in the year 2017 and 2018, respectively while 93 and 20 SNPs were associated with ALc gelatinization in the year 2017 and 2018 respectively. The identified potential new genes (GSK3-alpha, RING-type domain-containing protein, Tetratricopeptide repeat, Hexosyltransferase, GLP, SNF1, and WRKY transcription factor) within LD range (∼16 Kb to ∼15 Mb), BLUP value, and cis and trans-position of SNPs network provide valuable information for the future wheat breeding strategy for the improvement of the starch quality trait.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call