Abstract

The objective of the present study was to determine whether targeted-disruption of Npr1 gene (encoding for guanylyl cyclase/natriuretic peptide receptor-A; GC-A/NPRA) upregulates pro(renin) receptor (P)RR expression and leads to the activation of MAPKs in Npr1 gene-knockout mice. The Npr1 homozygous (Npr1−/−; 0-copy), heterozygous (Npr1+/−; 1-copy), wild-type (Npr1+/+; 2-copy), and gene-duplicated (Npr1++/++; 4-copy) mice were utilized. To identify the canonical pathway of (P)RR, we administered ACE-1 inhibitor (captopril), AT1R blocker (losartan), and MAPKs inhibitors (U0126 and SB203580) to all Npr1 mice genotypes. The renal expression of (P)RR mRNA was increased by 3-fold in 0-copy mice and 2-fold in 1-copy mice compared with 2-copy mice, which was also associated with significantly increased expression of ACE-1 and AT1R mRNA levels. Similarly, the phosphorylation of MAPKs (Erk1/2 and p-p38) was enhanced by 3.5-fold and 3.2-fold, respectively, in 0-copy mice with significant increases in 1-copy mice compared with 2-copy mice. The kidney and plasma levels of proinflammatory cytokines were significantly elevated in 0-copy and 1-copy mice. Treatment with captopril and losartan did not alter the expression of (P)RR in any of the Npr1 mice genotypes. Interestingly, losartan significantly reduced the phosphorylation of Erk1/2 and p38 in Npr1 mice. The present results suggest that the ablation of Npr1 upregulates (P)RR, MAPKs (Erk1/2 and p38), and proinflammatory cytokines in 0-copy and 1-copy mice. In contrast, the duplication of Npr1 exhibits the anti-inflammatory and antihypertensive effects by reducing the activation of MAPKs and inhibiting the expression levels of RAAS components and proinflammatory cytokines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call