Abstract

Pitcher plant bogs, or carnivorous plant wetlands, have experienced extensive habitat loss and fragmentation throughout the southeastern United States Coastal Plain, resulting in an estimated reduction to <3% of their former range. This situation has lead to increased management attention of these habitats and their carnivorous plant species. However, conservation priorities focus primarily on the plants since little information currently exists on other community members, such as their endemic arthropod biota. Here, we investigated the population structure of one of these, the obligate pitcher plant moth Exyra semicrocea (Lepidoptera: Noctuidae), using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Examination of 221 individuals from 11 populations across eight southeastern US states identified 51 unique haplotypes. These haplotypes belonged to one of two divergent (∼1.9–3.0%) lineages separated by the Mississippi alluvial plain. Populations of the West Gulf Coastal Plain exhibited significant genetic structure, contrasting with similarly distanced populations east of the Mississippi alluvial plain. In the eastern portion of the Coastal Plain, an apparent transition zone exists between two regionally distinct population groups, with a well-established genetic discontinuity for other organisms coinciding with this zone. The structure of E. semicrocea appears to have been influenced by patchy pitcher plant bog habitats in the West Gulf Coastal Plain as well as impacts of Pleistocene interglacials on the Apalachicola-Chattahoochee-Flint River Basin. These findings, along with potential extirpation of E. semicrocea at four visited, but isolated, sites highlight the need to consider other endemic or associated community members when managing and restoring pitcher plant bog habitats.

Highlights

  • Global biodiversity losses are occurring at an alarming rate, exceeding anything in the geological past [1]

  • Recent research examining Sarracenia alata, which ranges from eastern Texas to western Alabama, identified a phylogeographic break and high genetic divergence centered on the Mississippi River alluvial plain, with additional population structure on either side of the break [22]

  • We examined populations of E. semicrocea across the southeastern Coastal Plain to address the hypothesis that the genetic structure of this moth is consistent with the major finding of Koopman and Carstens [22] for S. alata, namely that a strong genetic break occurs across the geographic region occupied by the Mississippi River alluvial plain

Read more

Summary

Introduction

Global biodiversity losses are occurring at an alarming rate, exceeding anything in the geological past [1]. Recent research examining Sarracenia alata (the winged pitcher plant), which ranges from eastern Texas to western Alabama, identified a phylogeographic break and high genetic divergence centered on the Mississippi River alluvial plain, with additional population structure on either side of the break [22]. Such results highlight the potential uniqueness of individual pitcher plant populations that should be considered when developing management plans for these habitats.

Methods
Results
Discussion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call