Abstract

Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae) populations are currently at severely depleted levels due to historic overfishing, habitat loss, and pollution. The importance of biologically correct stock structure for effective conservation and management efforts is well known. Recent improvements in our understanding of Atlantic sturgeon migrations, movement, and the occurrence of putative dual spawning groups leads to questions regarding the true stock structure of this endangered species. In the James River, VA specifically, captures of spawning Atlantic sturgeon and accompanying telemetry data suggest there are two discrete spawning groups of Atlantic sturgeon. The two putative spawning groups were genetically evaluated using a powerful microsatellite marker suite to determine if they are genetically distinct. Specifically, this study evaluates the genetic structure, characterizes the genetic diversity, estimates effective population size, and measures inbreeding of Atlantic sturgeon in the James River. The results indicate that fall and spring spawning James River Atlantic sturgeon groups are genetically distinct (overall FST = 0.048, F’ST = 0.181) with little admixture between the groups. The observed levels of genetic diversity and effective population sizes along with the lack of detected inbreeding all indicated that the James River has two genetically healthy populations of Atlantic sturgeon. The study also demonstrates that samples from adult Atlantic sturgeon, with proper sample selection criteria, can be informative when creating reference population databases. The presence of two genetically-distinct spawning groups of Atlantic sturgeon within the James River raises concerns about the current genetic assignment used by managers. Other nearby rivers may also have dual spawning groups that either are not accounted for or are pooled in reference databases. Our results represent the second documentation of genetically distinct dual spawning groups of Atlantic sturgeon in river systems along the U.S. Atlantic coast, suggesting that current reference population database should be updated to incorporate both new samples and our increased understanding of Atlantic sturgeon life history.

Highlights

  • The Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae) is an anadromous fish that currently inhabits the east coast of North America from Labrador, CA to Florida, USA [1, 2, 3, 4, 5]

  • The genetic diversity within both James River spawning groups are comparable to those measured in the Edisto River [19] and on the high end of genetic diversity measured in other Atlantic sturgeon (AS) populations [34, 35], with no inbreeding detected

  • The Ne estimates for both James River AS spawning populations were comparable to the estimate for the spring Edisto River population, but were an order of magnitude less than the fall Edisto River population estimate [19]

Read more

Summary

Introduction

The Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus, Acipenseridae) is an anadromous fish that currently inhabits the east coast of North America from Labrador, CA to Florida, USA [1, 2, 3, 4, 5]. Due to the lack of juvenile AS captures in the James River, genetics from the two spawning populations cannot be compared in the same river-resident juvenile design similar to the Edisto River study; adult samples are available with substantial collection information to attempt to genetically address these putative spawning groups. The main objective of our study was to determine if genetic differences were present between spring and fall run AS by sampling the adult populations during the spawning seasons. Secondary objectives included determining the genetic health of the population(s) and evaluating if the use of appropriate sample selection criteria with adult AS can be used to identify dual-spawning group genetic signatures

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.