Abstract

Population attributes such as diversity, connectivity, and structure are important components of understanding species persistence and vulnerability to extinction. Hyla wrightorum, the Arizona treefrog, is native to the southwestern United States and Mexico, and an isolated group of populations exists in the Huachuca Mountains and Canelo Hills (HMCH) of southeastern Arizona, USA. Due to concerns about declining observations of the species within the isolated HMCH portion of its range, the HMCH group is currently a candidate for federal protection under the U.S. Endangered Species Act. We present results of a genetic study examining population diversity, structure, and connectivity within the HMCH region. We sampled DNA from H. wrightorum larvae and adults from ten distinct locations, 8 of which were breeding sites and 4 of which were previously undescribed localities for the species. We developed and genotyped 17 polymorphic microsatellite loci and quantified genetic diversity, population differentiation, and landscape influences on population genetic structure. We found evidence of larger than expected effective population sizes, significant genetic differentiation between populations, and evidence of distance being the primary driver of genetic structure of populations with some influence of slope and canopy cover. We found little evidence of recent genetic bottlenecks, and individual-based analyses indicate admixture between populations despite significant genetic differentiation. These patterns may indicate that the breeding sites within the Huachuca Mountains constitute a metapopulation. We suggest that the HMCH region may contain larger and more connected breeding populations than previously understood, but the dynamics of this system and the limited geographic extent of the HMCH group justify current concern for the persistence of the species in this region. Efforts to ensure availability of high-quality breeding habitats and control for local threats such as effects of invasive predators may be critical to the persistence of these unique populations of H. wrightorum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call