Abstract

Botrytis cinerea is an important pathogen of vegetable and fruit crops but little is known about its population structure and genetics in China. We hypothesized that the geographic populations of B. cinerea in China would be genetically differentiated by host, geographic location, and/or year. In this study, we collected 393 B. cinerea isolates representing 28 populations from tomato, cherry, and nectarine from 2006 to 2014 in China. The isolates were analyzed using 14 microsatellite markers, including six new markers that provided more genotyping power than the eight previously published loci. We also investigated the B. cinerea population structure and inferred its mode of reproduction and dispersal based on genotype data. High genotypic diversity was detected in all populations, and clonal reproduction was dominant. Southern China populations harbored more genotypes than northern populations. Differentiation by host plant was evident. Between 2011 and 2012, genotypes changed only slightly among years for Liaoning populations, but they changed substantially among years for the Shanghai and Fujian populations. Clonal dispersal was detected and the farthest dispersal distance was estimated to be about 1,717 km. Two high-frequency genotypes were widely distributed in more than 10 populations and across several years. Our results provide useful, novel information for plant breeding programs and control of B. cinerea in China.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call