Abstract
ABSTRACT Iron (Fe) deficiency has been a widespread problem in peanut (Arachis hypogaea L.) grown on calcareous soils of northern China and has resulted in significant yield losses. Field observations showed considerable variability in visual chlorosis symptoms among peanut cultivars in the same soil. The objective of this study was to confirm the genetic differences in resistance to Fe-deficiency chlorosis in peanut and to identify feasible indicators for screening Fe-efficient genotypes. Resistance to Fe chlorosis of sixteen peanut cultivars grown on calcareous soil was evaluated in the field and physiological responses to Fe-deficiency stress were studied in nutrient solution. There were significant differences in resistance to Fe-deficiency chlorosis among the sixteen peanut cultivars tested, which was identified with SPAD readings, active Fe concentrations in young leaves in the early growth stages, and the pod yield. For Fe-resistant peanut cultivars, Fe-reduction capacity and quality of releasing hydrogen ions from roots increased under Fe-deficiency stress. Highly correlated relationships were observed between the summation of root Fe reduction and field chlorosis scores for sixteen cultivars (r2 = 0.79). It was concluded that Fe-reduction capacity was a better physiological indicator for screening Fe-efficient peanut genotypes of the mechanisms measured.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.