Abstract

Recent genome-wide association (GWA) studies have identified dozens of common variants associated with adult height. However, it is unknown how these variants influence height growth during childhood. We derived peak height velocity in infancy (PHV1) and puberty (PHV2) and timing of pubertal height growth spurt from parametric growth curves fitted to longitudinal height growth data to test their association with known height variants. The study consisted of N = 3,538 singletons from the prospective Northern Finland Birth Cohort 1966 with genotype data and frequent height measurements (on average 20 measurements per person) from 0–20 years. Twenty-six of the 48 variants tested associated with adult height (p<0.05, adjusted for sex and principal components) in this sample, all in the same direction as in previous GWA scans. Seven SNPs in or near the genes HHIP, DLEU7, UQCC, SF3B4/SV2A, LCORL, and HIST1H1D associated with PHV1 and five SNPs in or near SOCS2, SF3B4/SV2A, C17orf67, CABLES1, and DOT1L with PHV2 (p<0.05). We formally tested variants for interaction with age (infancy versus puberty) and found biologically meaningful evidence for an age-dependent effect for the SNP in SOCS2 (p = 0.0030) and for the SNP in HHIP (p = 0.045). We did not have similar prior evidence for the association between height variants and timing of pubertal height growth spurt as we had for PHVs, and none of the associations were statistically significant after correction for multiple testing. The fact that in this sample, less than half of the variants associated with adult height had a measurable effect on PHV1 or PHV2 is likely to reflect limited power to detect these associations in this dataset. Our study is the first genetic association analysis on longitudinal height growth in a prospective cohort from birth to adulthood and gives grounding for future research on the genetic regulation of human height during different periods of growth.

Highlights

  • Height is a continuous complex trait which family and twin studies suggest is 80–90% heritable [1,2,3]

  • We investigated genetic variants of adult height for associations with peak height velocity in infancy (PHV1) and puberty (PHV2) and timing of pubertal growth spurt in a population based sample of 3,538 Finns born in 1966

  • Of the 48 genetic variants tested, seven of them associated with PHV1 and five with PHV2

Read more

Summary

Introduction

Height is a continuous complex trait which family and twin studies suggest is 80–90% heritable [1,2,3]. Recent genome-wide association (GWA) studies have found and replicated associations between common genetic variants from several genomic regions and adult height [4,5,6,7]. Each of the variants typically has only a small (,0.2–0.6 cm/allele) effect on height [4]. Longitudinal height growth analysis involves individual growth curve fitting and derivation of growth parameters from the fitted curves. Derived biologically meaningful growth parameters include peak velocities at periods of fast growth and the timing of these peaks [8,9]. The choice of periods of fast growth is based on prior knowledge of the biological regulation of height growth during these periods [10,11]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.