Abstract

We previously investigated whether inhibition of AMP-metabolizing enzymes could enhance AMP-activated protein kinase (AMPK) activation in skeletal muscle for the treatment of type 2 diabetes. Soluble 5′-nucleotidase II (NT5C2) hydrolyzes IMP and its inhibition could potentially lead to a rise in AMP to activate AMPK. In the present study, we investigated effects of NT5C2 deletion in mice fed a normal-chow diet (NCD) or a high-fat diet (HFD). On a NCD, NT5C2 deletion did not result in any striking metabolic phenotype. On a HFD however, NT5C2 knockout (NT5C2−/−) mice displayed reduced body/fat weight gain, improved glucose tolerance, reduced plasma insulin, triglyceride and uric acid levels compared with wild-type (WT) mice. There was a tendency towards smaller and fewer adipocytes in epididymal fat from NT5C2−/− mice compared to WT mice, consistent with a reduction in triglyceride content. Differences in fat mass under HFD could not be explained by changes in mRNA expression profiles of epididymal fat from WT versus NT5C2−/− mice. However, rates of lipolysis tended to increase in epididymal fat pads from NT5C2−/− versus WT mice, which might explain reduced fat mass. In incubated skeletal muscles, insulin-stimulated glucose uptake and associated signalling were enhanced in NT5C2−/− versus WT mice on HFD, which might contribute towards improved glycemic control. In summary, NT5C2 deletion in mice protects against HFD-induced weight gain, adiposity, insulin resistance and associated hyperglycemia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.