Abstract
Patients with coronavirus disease 2019 (COVID-19) were vulnerable to venous thromboembolism (VTE), which further increases the risk of unfavorable outcomes. However, neither genetic correlations nor shared genes underlying COVID-19 and VTE are well understood. This study aimed to characterize genetic correlations and common pathogenic mechanisms between COVID-19 and VTE. We used linkage disequilibrium score (LDSC) regression and Mendelian Randomization (MR) analysis to investigate the genetic associations and causal effects between COVID-19 and VTE, respectively. Then, the COVID-19 and VTE-related datasets were obtained from the Gene Expression Omnibus (GEO) database and analyzed by bioinformatics and systems biology approaches with R software, including weighted gene co-expression network analysis (WGCNA), enrichment analysis, and single-cell transcriptome sequencing analysis. The miRNA-genes and transcription factor (TF)-genes interaction networks were conducted by NetworkAnalyst. We performed the secondary analysis of the ATAC-seq and Chip-seq datasets to address the epigenetic-regulating relationship of the shared genes. This study demonstrated positive correlations between VTE and COVID-19 by LDSC and bidirectional MR analysis. A total of 26 potential shared genes were discovered from the COVID-19 dataset (GSE196822) and the VTE dataset (GSE19151), with 19 genes showing positive associations and 7 genes exhibiting negative associations with these diseases. After incorporating two additional datasets, GSE164805 (COVID-19) and GSE48000 (VTE), two hub genes TP53I3 and SLPI were identified and showed up-regulation and diagnostic capabilities in both illnesses. Furthermore, this study illustrated the landscapes of immune processes in COVID-19 and VTE, revealing the downregulation in effector memory CD8+ T cells and activated B cells. The single-cell sequencing analysis suggested that the hub genes were predominantly expressed in the monocytes of COVID-19 patients at high levels. Additionally, we identified common regulators of hub genes, including five miRNAs (miR-1-3p, miR-203a-3p, miR-210-3p, miR-603, and miR-124-3p) and one transcription factor (RELA). Collectively, our results highlighted the significant correlations between COVID-19 and VTE and pinpointed TP53I3 and SLPI as hub genes that potentially link the severity of both conditions. The hub genes and their common regulators might present an opportunity for the simultaneous treatment of these two diseases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Inflammation research : official journal of the European Histamine Research Society ... [et al.]
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.