Abstract

According to the aerobic capacity model, endothermy in birds and mammals evolved as a correlated response to selection for an ability of sustained locomotor activity, rather than in a response to direct selection for thermoregulatory capabilities. A key assumption of the model is that aerobic capacity is functionally linked to basal metabolic rate (BMR). The assumption has been tested in several studies at the level of phenotypic variation among individuals or species, but none has provided a clear answer whether the traits are genetically correlated. Here we present results of a genetic analysis based on measurements of the basal and the maximum swim- and cold-induced oxygen consumption in about 1000 bank voles from six generations of a laboratory colony, reared from animals captured in the field. Narrow sense heritability (h2) was about 0.5 for body mass, about 0.4 for mass-independent basal and maximum metabolic rates, and about 0.3 for factorial aerobic scopes. Dominance genetic and common environmental (= maternal) effects were not significant. Additive genetic correlation between BMR and the swim-induced aerobic capacity was high and positive, whereas correlation resulting from specific-environmental effects was negative. However, BMR was not genetically correlated with the cold-induced aerobic capacity. The results are consistent with the aerobic capacity model of the evolution of endothermy in birds and mammals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.