Abstract

Stem cells and other associated cell types may be a potential alternative to treat various genetic disorders that currently do not benefit from traditional approaches. Functional recovery of cells could be induced via directional differentiation or genetic manipulation. In this study, mesenchymal stem cells(MSCs) were obtained from a patient with osteoarthritis(OA) carrying a functional single‑nucleotide polymorphism (SNP rs143383, C/T transition) within the 5'‑UTR of growth and differentiation factor5(GDF5) gene. The SNP causes GDF5 expression to be reduced and thus increases OA susceptibility. Aiming to correct the dysfunctional gene, a pair of transcription activator‑like effector nucleases (TALENs) were designed to cleave the DNA around the mutated locus, coupled with a short single stranded DNA complementary to the cleavage site. Following invitro cell colony formation and selection, two genetically corrected MSC colonies were identified out of a total of142. These MSCs were induced and differentiated into chondrocytes. As a result, genetically corrected chondrocytes exhibited normal morphology and lower levels of apoptosis compared with cells carrying the SNP. In cultured cells, the secretion of matrix metalloproteinases was suppressed and TIMP metallopeptidase inhibitor1 was increased by correction of the mutation. Furthermore, the expression of GDF5 target genes, cell vitality‑associated genes and extracellular matrix degrading genes were returned to normal levels in corrected cells compared with mutation‑carrying cells, indicating the functional recovery of these corrected chondrocytes. The present study demonstrated that TALEN‑mediated genetic correction can be used to edit genes in adipose‑derived MSCs from patients with OA and may have clinical potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.