Abstract

A central issue in evolutionary biology is the extent to which complex social organization is under genetic control. We have found that a single genomic element marked by the protein-encoding gene Gp-9 is responsible for the existence of two distinct forms of social organization in the fire ant Solenopsis invicta. This genetic factor influences the reproductive phenotypes and behavioral strategies of queens and determines whether workers tolerate a single fertile queen or multiple queens per colony. Furthermore, this factor affects worker tolerance of queens with alternate genotypes, thus explaining the dramatic differences in Gp-9 allele frequencies observed between the two social forms in the wild. These findings reveal how a single genetic factor can have major effects on complex social behavior and influence the nature of social organization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.