Abstract

Shade-avoidance syndrome is characterized by the formation of elongated petioles and unexpanded leaf blades under low-intensity light, but the genetic basis for these responses is unknown. In this study, two-dimensional mutational analysis revealed that the gene for phytochrome B, PHYB, had opposing effects in the leaf petioles and leaf blades of Arabidopsis, while the ROT3, ACL2, and GAI genes influenced the length of leaf petioles more significantly than the length of leaf blades. Anatomical analysis revealed that the PHYB and ACL2 genes control the length of leaf petioles exclusively via control of the length of individual cells, while the GAI, GA1 and ROT3 genes appeared to control both the elongation and proliferation of petiole cells, in particular, under strong light. By contrast, both the size and the number of cells were affected by the mutations examined in leaf blades. The differential control of leaf petiole length and leaf blade expansion is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.