Abstract

BackgroundControl of the world’s most important vector-borne viral disease, dengue, is a high priority. A lack of vaccines or effective vector control methods means that novel solutions to disease control are essential. The release of male insects carrying a dominant lethal (RIDL) is one such approach that could be employed to control Aedes aegypti. To maximise the potential of RIDL control, optimum release strategies for transgenic mosquitoes are needed. The use of field data to parameterise models allowing comparisons of the release of different life-stages is presented together with recommendations for effective long-term suppression of a wild Ae. aegypti population.MethodsA compartmental, deterministic model was designed and fitted to data from large-scale pupal mark release recapture (MRR) field experiments to determine the dynamics of a pupal release. Pulsed releases of adults, pupae or a combination of the two were simulated. The relative ability of different release methods to suppress a simulated wild population was examined and methods to maintain long-term suppression of a population explored.ResultsThe pupal model produced a good fit to field data from pupal MRR experiments. Simulations using this model indicated that adult-only releases outperform pupal-only or combined releases when releases are frequent. When releases were less frequent pupal-only or combined releases were a more effective method of distributing the insects. The rate at which pupae eclose and emerge from release devices had a large influence on the relative efficacy of pupal releases. The combined release approach allows long-term suppression to be maintained with smaller low-frequency releases than adult- or pupal-only release methods.ConclusionsMaximising the public health benefits of RIDL-based vector control will involve optimising all stages of the control programme. The release strategy can profoundly affect the outcome of a control effort. Adult-only, pupal-only and combined releases all have relative advantages in certain situations. This study successfully integrates field data with mathematical models to provide insight into which release strategies are best suited to different scenarios. Recommendations on effective approaches to achieve long-term suppression of a wild population using combined releases of adults and pupae are provided.

Highlights

  • Control of the world’s most important vector-borne viral disease, dengue, is a high priority

  • Experimental data From the four independent mark release recapture (MRR) experiments 46, 146, 32 and 56 marked adult males were recaptured in the field

  • Pupal dynamics model Model fit of the pupal dynamics model to pupal MRR data from Grand Cayman was qualitatively good with predicted values falling within the 95% confidence intervals for all but two time points (Figure 1) allowing estimates of mortality and recapture rates to be made (Table 2)

Read more

Summary

Introduction

Control of the world’s most important vector-borne viral disease, dengue, is a high priority. A lack of vaccines or effective vector control methods means that novel solutions to disease control are essential. The release of male insects carrying a dominant lethal (RIDL) is one such approach that could be employed to control Aedes aegypti. The mosquito-borne viral infection, dengue, has shown trends of increasing incidence [1] and geographical distribution [2,3] in recent years. Control of Aedes spp, the mosquito vectors of the virus, remains the primary approach in the prevention of dengue. There is a lack of effective tools for controlling the vector, emphasising the importance of new methods of control. The release of insects carrying a dominant lethal (RIDL) is one such approach. The technology has been used to successfully demonstrate control of a wild population of Ae. aegypti in the Cayman Islands [6]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call