Abstract
We have mapped genes causing life-history trade-offs, and they behave as predicted by ecological theory. Energetic and quantitative-genetic models suggest a trade-off between age and size at first reproduction. Natural selection favored plants that flower early and attain large size at first reproduction. Response to selection was opposed by a genetic trade-off between these two components of fitness. Two quantitative-trait loci (QTLs) influencing flowering time were mapped in a recombinant inbred population of Arabidopsis. These QTLs also influenced size at first reproduction, but did not affect growth rate (resource acquisition). Substitutions of small chromosomal segments, which may represent allelic differences at flowering time loci, caused genetic trade-offs between life-history components. One QTL explained 22% of the genetic variation in flowering time. It is within a few centiMorgans (cM) of the gigantea (GI) locus, and may be allelic with GI. Sixteen percent of the genetic variation was explained by another QTL, FDR1, near 18 cM on chromosome II, which does not correspond to any previously identified flowering-time locus. These life-history genes regulate patterns of resource allocation and life-history trade-offs in this population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Evolution; international journal of organic evolution
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.