Abstract

AbstractOctopus insularis is a shallow‐water octopus distributed throughout the western Atlantic, the Gulf of Mexico and the Caribbean. To evaluate its phylogeographic pattern, mitochondrial markers (16S rRNA and COIII) and genome‐wide nuclear markers (SNP's) were analyzed in individuals from artisanal fishing in different locations of the Colombian Caribbean coast. Mitochondrial analyzes displayed novel haplotypes (16S = H2, H3 and H4; COIII = H2–H7) and haplotypes shared with distant geographic areas (16S = H1 COIII = H1). The COIII gene did not show genetic differentiation between the analyzed localities, while the 16S gene showed significant differences between Santa Marta and Isla Fuerte. COIII's demographic analysis indicated that the species' effective population size has remained constant. Inferences were made from next‐generation genomic data with restriction site‐associated DNA (ddRAD‐seq) and 6769 polymorphic loci. The pairwise FST test indicated that there are low but significant differences between localities; however, the general molecular analysis of variance (AMOVA) and the principal coordinate analysis showed a lack of spatial structure in the populations analyzed. The Mantel test found no correlation between genetic distance and geographic distance, and the genetic structure analyses showed the presence of one genetic stock. The information obtained in this study indicates the genetic connectivity of O. insularis in the southwestern Caribbean, the absence of putative biogeographic barriers that affect its gene flow, and the crucial role played by life history strategies (planktonic paralarvae) and oceanographic factors to define the current distribution of its genetic diversity in this region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call