Abstract

To improve crops, it is important to secure plant genetic source material and evaluate the genetic diversity. Ginseng (Panax ginseng C.A. Meyer) has long been used as a medicinal herb in Korea and China. Since ginseng originated from wild ginseng with low genetic diversity, it is also expected to have low genetic diversity. In this study, the genetic diversity of 451 ginseng accessions conserved in the National Agrobiodiversity Center (NAC) at Korea was analyzed using 33 SSR markers. Another objective was to establish a strategy for NAC to manage ginseng germplasm based on these results. The 451 accessions were collected from 22 cities in six provinces in South Korea. Among the 451 ginseng accessions, 390 (86.5%) and 61 (13.5%) were landraces and breeding lines, respectively. In the STRUCTURE results for the accessions, there was no relationship between assigned genotypes and collection areas, but there was a population genetic structure. In addition, genetic differentiation within populations of each analysis was low, indicating that the ginseng accessions conserved at NAC are extensively dispersed throughout the collection areas. The results of this study suggest that NAC should increase the genetic diversity of ginseng accessions for breeding programs, and alternatives are needed for securing ginseng genetic resources.

Highlights

  • Plant breeding in agriculture has decreased the diversity of many crops, which has caused bottlenecks in crop domestication, dispersal, and modernization

  • Since loss of genetic variation could decrease the potential of species to persist in the face of abiotic and biotic environmental changes, genetic erosion could pose a severe threat to long-term global food security [3]

  • The 451 ginseng accessions in this study were collected from 22 cities in six provinces in South

Read more

Summary

Introduction

Plant breeding in agriculture has decreased the diversity of many crops, which has caused bottlenecks in crop domestication, dispersal, and modernization. Researchers, in particular, have identified significant negative effects of plant breeding on diversity following the modernization bottleneck [1]. The loss of crop variation caused by the modernization of agriculture has been described as genetic erosion [2]. Since loss of genetic variation could decrease the potential of species to persist in the face of abiotic and biotic environmental changes, genetic erosion could pose a severe threat to long-term global food security [3]. Crop improvement largely depends on immediate conservation of genetic resources for their effective and sustainable utilization. It is necessary to conserve and breed the vast genetic variation found in populations of the wild progenitors and landraces of cultivated plants [4,5]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call