Abstract

The ability of natural selection to optimize traits depends on the topology of the genotype-fitness map (fitness landscape). Epistatic interactions produce rugged fitness landscapes, where adaptation is constrained by the presence of low-fitness intermediates. Here, we used simulations to explore how evolvability in rugged fitness landscapes is influenced by genetic complementation, a process whereby different sequence variants mutually compensate for their deleterious mutations. We designed our model inspired by viral populations, in which genetic variants are known to interact frequently through coinfection. Our simulations indicate that genetic complementation enables a more efficient exploration of rugged fitness landscapes. Although this benefit may be undermined by genetic parasites, its overall effect on evolvability remains positive in populations that exhibit strong relatedness between interacting sequences. Similar processes could operate in contexts other than viral coinfection, such as in the evolution of ploidy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.