Abstract

The S genome of Aegilops speltoides is closely related to the B and G genomes of polyploid wheats. However, little work has been reported on the genetic relationships between the S-genome and B-genome chromosomes of polyploid wheat. Here, we report the isolation of a set of disomic substitutions (DS) of S-genome chromosomes for the B-genome chromosomes and their effects on gametophytic and sporophytic development. Ae. speltoides chromosomes were identified by their distinct C-banding and fluorescence in situ hybridization patterns with the Ae. speltoides-derived clone pGc1R-1. Although no large structural differences between S-genome and B-genome chromosomes exist, significant differences in gametophytic compensation were observed for chromosomes 1S, 3S, 5S and 6S. Similarly, chromosomes 1S, 2S, 4S, 5S and 6S affected certain aspects of sporophytic development in relation to spike morphology, fertility and meiotic pairing. The DS5S(5B) had disturbed meiosis with univalents/multivalents and suffered chromosome elimination in the germ tissues leading to haploid spikes in 50% of the plants. The effect of the Ph1 gene on meiosis is well known, and these results provide evidence for the role of Ph1 in the maintenance of polyploid genome integrity. These and other data are discussed in relation to the structural and functional differentiation of S- and B-genome chromosomes and the practical utility of the stocks in wheat improvement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call