Abstract

Hydroxyurea is an excellent selective agent for obtaining drug-resistant mutants. At a frequency of approximately 1 X 10(-5) it was possible to select, in a single step, colonies that exhibited significant resistance to the cytotoxic effects of the drug. These hydroxyurea-resistant cell lines maintained their resistant phenotype after extensive cultivation in the absence of the drug. Reconstruction experiments indicated that the expression of hydroxyurea-resistance and the frequency of drug-resistant colonies was independent of cell densities up to 5 X 10(5) cells per 100-mm selection plate. Luria-Delbrück fluctuation analyses indicated that the appearance of hydroxyurea-resistant cells in wild type populations occurred spontaneously and at a rate of 4.8 X 10(-6) per cell per generation in the presence of 0.33 mM drug. Studies with the mutagen, ethyl methane sulfonate indicated that it was capable of increasing the frequency of hydroxyurea-resistant cells by a factor of approximately 10. Also, cell-cell hybridization experiments showed that hydroxyurea-resistance behaves as a dominant or codominant trait and that hydroxyurea-resistance was a useful new genetic marker for selection of somatic cell hybrids. Furthermore, similar to many other drug-resistant cell lines hydroxyurea-resistant cells were found to exhibit an altered sensitivity to a number of non-selective agents (guanazole, N-carbamoyloxyurea, formamidoxime, and hydroxyurethane). Except for guanazole these compounds are structurally very similar to hydroxyurea and may be expected to have similar modes of action. The results presented in this paper support the view that hydroxyurea-resistance is expressed as a normal genetic trait and is a useful genetic marker for somatic cell genetic studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call