Abstract
Hepatitis-hydropericardium syndrome (HHS) is a severe disease that causes 20 to 80% mortality in chickens aged 3 to 6 wk. Fowl aviadenovirus serotype 4 (FAdV-4) plays an important role in the etiology of HHS. Since 2015, outbreaks of HHS have been reported in several provinces of China; however, details regarding the FAdV-4 genome properties are lacking. In the present study, the complete genomes of 9 isolates responsible for these outbreaks in Guangxi Province, China, were sequenced. To investigate the molecular characteristics of these FAdV-4 isolates, we compared their genomes with those of other reported pathogenic and nonpathogenic FAdV-4 isolates. A variable number of GA repeats were observed in the isolates of this study. Each of the isolates GX2017-01, GX2017-02, GX2018-08, and GX2019-09 had 11 GA repeats; GX2017-03, GX2017-04, and GX2017-05 each had 10 GA repeats, while GX2017-06 and GX2018-07 each had 8 GA repeats. We observed several deletions and distinct amino acid mutations in the major structural genes of these isolates when compared with non-Chinese isolates. We found 2 novel putative genetic markers in the hexon protein, one present in GX2017-02, in which aspartic acid (D) was changed to tyrosine (Y), and another present in each of isolates GX2018-08 and GX2019-09, in which serine (S) was changed to arginine (R), when compared with selected Chinese and some non-Chinese isolates. Moreover, the phylogenetic analysis revealed that all the isolates of this study were clustered within FAdV-C. We found that these isolates were closely related to other recently isolated Chinese strains. The data presented in this study will not only increase the understanding of the molecular epidemiology and genetic diversity of FAdV-4 isolates in China but also has an important reference value of the major factors that determine the virulence of FAdV-4 strains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.