Abstract

This paper presents a novel vector quantizer (VQ) design algorithm optimized to a burst error channel (BEC) for robust communication. The Gilbert–Elliot model is used to describe the BEC. Based on the model, the objective of this algorithm is to minimize the average distortion when the BEC is in the normal state of operation, while maintaining a minimum fidelity when the BEC is in the undesirable state. In the algorithm, an iterative design procedure is first derived for obtaining a local optimal solution to the problem. A novel genetic scheme is then proposed for attaining a near global optimal performance. Numerical results show that, when delivering information over the BEC, the algorithm significantly outperforms the VQ techniques optimizing the design only to the simple binary symmetric channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.