Abstract

BackgroundAortic stenosis (AS) is a prevalent and serious valvular heart disease with a complex etiology involving genetic predispositions, lipid dysregulation, and inflammation. The specific roles of lipid and protein biomarkers in AS development are not fully elucidated. This study aimed to elucidate the causal relationships between lipidome, inflammatory proteins, and AS using Mendelian randomization (MR), identifying potential therapeutic targets.MethodsUtilizing data from large-scale genome-wide association studies (GWAS) and genome-wide protein quantitative trait loci (pQTL) studies, we conducted MR analyses on 179 plasma lipidome and 91 inflammatory proteins to assess their causal associations with AS. Our approach included Inverse Variance Weighting (IVW), Wald ratio, and robust adjusted profile score (RAPS) analyses to refine these associations. MR-Egger regression was used to address directional horizontal pleiotropy.ResultsOur MR analysis showed that genetically predicted 50 lipids were associated with AS, including 38 as risk factors [(9 Sterol ester, 18 Phosphatidylcholine, 4 Phosphatidylethanolamine, 1 Phosphatidylinositol and 6 Triacylglycerol)] and 12 as protective. Sterol ester (27:1/17:1) emerged as the most significant risk factor with an odds ratio (OR) of 3.11. Additionally, two inflammatory proteins, fibroblast growth factor 19 (FGF19) (OR = 0.830, P = 0.015), and interleukin 6 (IL-6) (OR = 0.729, P = 1.79E-04) were significantly associated with reduced AS risk. However, a two-step MR analysis showed no significant mediated correlations between these proteins and the lipid–AS pathway.ConclusionThis study reveals complex lipid and protein interactions in AS, identifying potential molecular targets for therapy. These results go beyond traditional lipid profiling and significantly advance our genetic and molecular understanding of AS, highlighting potential pathways for intervention and prevention.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.