Abstract

Damage to skeletal muscle necessitates regeneration to maintain proper muscle form and function. Interindividual differences in injury severity, recovery time, and injury rate could be explained by the presence of single nucleotide polymorphisms (SNPs) in genes involved in the reparation and regeneration of connective tissue . We wished to identify new genetic biomarkers that could help to prevent or minimize the risk of non-contact muscle injuries and are associated with a predisposition to developing muscle injuries. Using allelic discrimination techniques, we analysed 12 SNPs in selected genes from the genomic DNA of 74 elite soccer players. SNPs in the hepatocyte growth factor (HGF) gene showed evidence of a statistically significant association with injury incidence, severity, and recovery time. SNPs in the SOX15 gene showed evidence of a statistically significant association with injury incidence. SNPs in the GEFT and LIF genes showed evidence of a statistically significant association with recovery time. Genetic profile could explain why some elite soccer players are predisposed to suffer more injuries than others and why they need more time to recover from a particular injury. SNPs in HGF genes have an important role as biomarkers of biological processes fragility within muscle injuries related to injury rate, severity, and long recovery time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.