Abstract

Understanding the genetic basis of phenotypic variation is essential for predicting the direction and rate of phenotypic evolution. We estimated heritabilities and genetic correlations of morphological (fork length, pectoral and pelvic fin ray counts, and gill arch raker counts) and life-history (egg number and individual egg weight) traits of pink salmon (Oncorhynchus gorbuscha) from Likes Creek, Alaska, in order to characterize the genetic basis of phenotypic variation in this species. Families were created from wild-caught adults, raised to the fry stage in the lab, released into the wild, and caught as returning adults and assigned to families using microsatellite loci and a growth hormone locus. Morphological traits were all moderately to highly heritable, but egg number and egg weight were not heritable, suggesting that past selection has eliminated additive genetic variation in egg number and egg weight or that there is high environmental variance in these traits. Genetic correlations were similar for nonadjacent morphological traits and adjacent traits. Genetic correlations predicted phenotypic correlations fairly accurately, but some pairs of traits with low genetic correlations had high phenotypic correlations, and vice versa, emphasizing the need to use caution when using phenotypic correlations as indices of genetic correlations. This is one of only a handful of studies to estimate heritabilities and genetic correlations for a wild population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call