Abstract

BackgroundTocopherols are natural antioxidants with both in vivo (vitamin E) and in vitro activity. Sunflower seeds contain predominantly alpha-tocopherol (>90% of total tocopherols), with maximum vitamin E effect but lower in vitro antioxidant action than other tocopherol forms such as gamma-tocopherol. Sunflower germplasm with stable high levels of gamma-tocopherol (>85%) has been developed. The trait is controlled by recessive alleles at a single locus Tph2 underlying a gamma-tocopherol methyltransferase (gamma-TMT). Additionally, unstable expression of increased gamma-tocopherol content in the range from 5 to 85% has been reported. The objective of this research was to determine the genetic basis of unstable expression of high gamma-tocopherol content in sunflower seeds.ResultsMale sterile plants of nuclear male sterile line nmsT2100, with stable high gamma-tocopherol content, were crossed with plants of line IAST-1, with stable high gamma-tocopherol content but derived from a population that exhibited unstable expression of the trait. F2 seeds showed continuous segregation for gamma-tocopherol content from 1.0 to 99.7%. Gamma-tocopherol content in F2 plants (average of 24 individual F3 seeds) segregated from 59.4 to 99.4%. A genetic linkage map comprising 17 linkage groups (LGs) was constructed from this population using 109 SSR and 20 INDEL marker loci, including INDEL markers for tocopherol biosynthesis genes. QTL analysis revealed a major QTL on LG 8 that corresponded to the gamma-TMT Tph2 locus, which suggested that high gamma-tocopherol lines nmsT2100 and IAST-1 possess different alleles at this locus. Modifying genes were identified at LGs 1, 9, 14 and 16, corresponding in most cases with gamma-TMT duplicated loci.ConclusionsUnstable expression of high gamma-tocopherol content is produced by the effect of modifying genes on tph2a allele at the gamma-TMT Tph2 gene. This allele is present in line IAST-1 and is different to allele tph2 present in line nmsT2100, which is not affected by modifying genes. No sequence differences at the gamma-TMT gene were found associated to allelic unstability. Our results suggested that modifying genes are mostly epistatically interacting gamma-TMT duplicated loci.

Highlights

  • Tocopherols are natural antioxidants with both in vivo and in vitro activity

  • Examination of variation of individual F3 seeds within each F2 plant showed that minimum gamma-tocopherol content in individual F3 seeds from the different F3 families ranged from 0.0 to 98.4%, whereas maximum gamma-tocopherol content was in all cases above 94%

  • The results of this research suggest that high gammatocopherol in sunflower lines IAST-1 and nmsT2100 is determined by different mutated alleles at the gammaTMT Tph2 locus on linkage group (LG) 8

Read more

Summary

Introduction

Tocopherols are natural antioxidants with both in vivo (vitamin E) and in vitro activity. Sunflower seeds contain predominantly alpha-tocopherol (>90% of total tocopherols), with maximum vitamin E effect but lower in vitro antioxidant action than other tocopherol forms such as gamma-tocopherol. The objective of this research was to determine the genetic basis of unstable expression of high gamma-tocopherol content in sunflower seeds. Tocopherols are the main antioxidants present in seed oils. They form a family of four fat-soluble compounds with vitamin E activity named alpha-, beta-, gamma-, and delta tocopherol. The relative in vivo and in vitro antioxidant properties of the specific tocopherols is determined by their chemical structure. Studies conducted in sunflower seed oil, in which alpha-tocopherol accounts for more than >90% of the total tocopherols, concluded that substitution of alphatocopherol by gamma-tocopherol has a positive impact on the stability of the oil [6,7,8,9]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call