Abstract

Research on various species has revealed a connection between genome size variation and the physiological and ecological characteristics of the species, suggesting that it could be a crucial factor influencing a species' adaptability to different environments. Wheat, being one of the world's three primary grains, holds significance in this regard. Investigating the genome size of wheat and analyzing the genetic factors contributing to its variation could offer valuable insights for enhancing wheat agronomic traits. This project has developed a conservative site ratio calculation approach to determine the size of the wheat genome. Additionally, it employs flow cytometry and k-mer distribution analysis to validate this method. Furthermore, the researchers use re-sequencing data to investigate the impact of environmental selection pressure and transposon dynamics on the variation in the size of the wheat genome. The findings from this study demonstrate a strong relationship between the size of the wheat genome and several environmental factors. These results serve as a valuable reference for understanding the development of variation in the size of the hetero-hexaploid wheat genome. Moreover, they contribute to advancing fundamental research on the genetic mechanisms underlying wheat characteristics. Additionally, the study paves the way for exploring new research directions in wheat breeding, which holds promise for future advancements in this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call