Abstract

Aging is an archetypical complex process influenced by genetic and environmental factors. Genetic variants impart a gradient of effect sizes, albeit the effect sizes seem to be skewed toward those with small effect sizes. On one end of the spectrum are the rare monogenic premature aging syndromes, such as Hutchinson Gilford Progeria Syndrome, whereby single nucleotide changes lead to rapidly progressive premature aging. On the end of the spectrum is the complex, slowly progressive process of living to an arbitrary-defined old age, i.e., longevity. Whereas the genetic basis of rare premature aging syndromes has been elucidated, only a small fraction of the genetic determinants of longevity and life span, time from birth to death, have been identified. The latter point to the complexity of the process and involvement of myriad of genetic and non-genetic factors and hence, the diluted effect of each determinant on longevity. The genetic discoveries point to the involvement of the DNA damage and activation of the DNA damage response pathway, particularly in the premature aging syndromes. Likewise, the insulin/insulin-like growth factor 1/mTOR/FOXO pathways have emerged as major regulators of life span. A notable fraction of the genetic variants that are associated with life span is also associated with age-related cardiovascular diseases, such as coronary artery disease and dyslipidemia, which places cardiovascular aging at the core of human life span. The clinical impact of the discoveries pertains to the identification of the pathways that are involved in life span, which might serve as targets of interventions to prevent, slow, and even possibly reverse aging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.