Abstract

Plastic accumulation in the world amounts to approximately 8300 million tons. Polyurethanes (PU) account for 7.7 % of total plastics production worldwide, and their diverse chemical composition makes them highly recalcitrant to biodegradation. Several works have reported polyurethane-degrading microbial communities. However, it is still necessary to learn more about the chemical, biochemical, and genetic bases linked to the polyurethanolytic phenotype and the microbial taxonomic determinants responsible for metabolizing the PU polymer and its associated chemical additives. To shed light on this problem, we applied physical, chemical, biochemical, metagenomic, and bioinformatic analyses to explore the biodegradation capability and related biochemical and genetic determinants of the BP6 microbial community that can grow in PolyLack, a commercial coating containing a polyether polyurethane acrylate (PE-PU-A) copolymer and several additives, as sole carbon source. We observed complete additives (isopropanol, N-methyl-2-pyrrolidone, 2-butoxyethanol, alkyl glycol ethers) biodegradation and the appearance of released polymer components (toluene diisocyanate (TDI) and methylene diphenyl diisocyanate (MDI) derivatives), and multiple degradation products since early cultivation times. The Hi-C metagenomic analysis identified a complex microbiome with 35 deconvolved Metagenome-Assembled Genomes (MAGs) – several new species – and biodegradation markers that suggest the coexistence of hydrolytic, oxidative, and reductive metabolic strategies for degrading the additives and the PU copolymer. This work also provides evidence of the metabolic capability the BP6 community has for biodegrading polyether polyurethane foams. Based on these analyses, we propose a novel metabolic pathway for 4,4′-methylenedianiline (MDA), an initial biodegradation intermediate of MDI-based PU, encoded in the complex BP6 community metagenome and suggest that this community is a potential biotechnological tool for PU bio-recycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.