Abstract

BackgroundJunipers (Juniperus spp.) are woody native, invasive plants that have caused encroachment problems in the U.S. western rangelands, decreasing forage productivity and biodiversity. A potential solution to this issue is using goats in targeted grazing programs. However, junipers, which grow in dry and harsh environmental conditions, use chemical defense mechanisms to deter herbivores. Therefore, genetically selecting goats for increased juniper consumption is of great interest for regenerative rangeland management. In this context, the primary objectives of this study were to: 1) estimate variance components and genetic parameters for predicted juniper consumption in divergently selected Angora (ANG) and composite Boer x Spanish (BS) goat populations grazing on Western U.S. rangelands; and 2) to identify genomic regions, candidate genes, and biological pathways associated with juniper consumption in these goat populations.ResultsThe average juniper consumption was 22.4% (± 18.7%) and 7.01% (± 12.1%) in the BS and ANG populations, respectively. The heritability estimates (realized heritability within parenthesis) for juniper consumption were 0.43 ± 0.02 (0.34 ± 0.06) and 0.19 ± 0.03 (0.13 ± 0.03) in BS and ANG, respectively, indicating that juniper consumption can be increased through genetic selection. The repeatability values of predicted juniper consumption were 0.45 for BS and 0.28 for ANG. A total of 571 significant SNP located within or close to 231 genes in BS, and 116 SNP related to 183 genes in ANG were identified based on the genome-wide association analyses. These genes are primarily associated with biological pathways and gene ontology terms related to olfactory receptors, intestinal absorption, and immunity response.ConclusionsThese findings suggest that juniper consumption is a heritable trait of polygenic inheritance influenced by multiple genes of small effects. The genetic parameters calculated indicate that juniper consumption can be genetically improved in both goat populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call