Abstract

The aim of this study was to investigate genetic relationships between beef traits of station-tested young bulls and carcass and meat quality traits (MQ) of commercial intact males in Piemontese cattle. Phenotypes for daily gain (DG) and live fleshiness traits (width at withers: WW; shoulder muscularity: SM; loin width: LW; loin thickness: LT; thigh muscularity: TM; thigh profile: TP) and thinness of the shin bone (BT) were available for 3,109 and 2,183 performance-tested young bulls, respectively. Carcass daily gain (CDG), carcass conformation (SEUS), pH at 24 h (pH24h) and 8 d after slaughter (pH8d), lightness (L*), redness (a*), yellowness (b*), hue angle (HA), saturation index (SI), drip loss (DL), cooking loss (CL), and shear force (SF) were assessed for 1,208 commercial intact males. (Co) variance components were estimated in a set of twelve 9-traits analyses using REML and linear animal models including all performance-test traits and 1 carcass or MQ trait at a time. Heritabilities ± SE of beef traits ranged from 0.26 ± 0.03 (LW) to 0.47 ± 0.01 (DG), whereas those of carcass traits and MQ from 0.06 ± 0.03 (CL) to 0.63 ± 0.04 (HA). The genetic correlation (rg) between DG and CDG was 0.75 ± 0.10, indicating that DG, as measured at the test station, is a good indicator of the carcass gain achieved by commercial animals under farms conditions. Daily BW gain of station-tested bulls correlated positively with color traits (from 0.11 ± 0.12 to 0.54 ± 0.09), ph8d (rg ± SE = 0.31 ± 0.11), DL (rg ± SE = 0.29 ± 0.17), and CL (rg ± SE = 0.27 ± 0.18). Live fleshiness of station-tested bulls exhibited genetic correlations with MQ of commercial animals that were positive for L* and b* (from 0.13 ± 0.08 to 0.65 ± 0.14) and negative for pH (from -0.27 ± 0.15 to -0.57 ± 0.11), CL (from -0.16 ± 0.23 to -0.43 ± 0.22), and SF (TM: rg ± SE = -0.31 ± 0.15; TP: rg ± SE = -0.41 ± 0.17). The thinness of the shin bone correlated unfavorably with CDG (rg ± SE = -0.74 ± 0.07) and favorably with SEUS (rg ± SE = 0.65 ± 0.17), CL (rg ± SE = -0.39 ± 0.13), and SF (rg ± SE = -0.32 ± 0.17). The estimated genetic correlations indicate that selection to increase DG, as measured at the test station, exerts moderate adverse effects on MQ. Because selection emphasis is greater for live fleshiness than for DG, the correlated response in MQ and carcass traits is expected to be influenced to a greater extent by selection for muscularity, even though these traits are less heritable than DG.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.