Abstract
Diabetic retinopathy (DR) is a diabetic microvascular complication and a leading cause of vision loss. However, there is a lack of effective strategies to reduce the risk of DR currently. The present study is aimed at assessing the causal effect of lipid-regulating targets on DR risk using a two-sample Mendelian randomization (MR) study. Genetic variants within or near drug target genes, including eight lipid-regulating targets for LDL-C (HMGCR, PCSK9, and NPC1L1), HDL-C (CETP, SCARB1, and PPARG), and TG (PPARA and LPL), were selected as exposures. The exposure data were obtained from the IEU OpenGWAS project. The outcome dataset related to DR was obtained from the FinnGen research project. Inverse-variance-weighted MR (IVW-MR) was used to calculate the effect estimates by each target. Sensitivity analyses were performed to verify the robustness of the results. There was suggestive evidence that PCSK9-mediated LDL-C levels were positively associated with DR, with OR (95% CI) of 1.34 (1.02-1.77). No significant association was found between the expression of HMGCR- and NPC1L1-mediated LDL-C levels; CETP-, SCARB1-, and PPARG-mediated HDL-C levels; PPARA- and LPL-mediated TG levels; and DR risk. This is the first study to reveal a genetically causal relationship between lipid-regulating drug targets and DR risk. PCSK9-mediated LDL-C levels maybe positively associated with DR risk at the genetic level. This study provides suggestive evidence that PCSK9 inhibition may reduce the risk of DR.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.