Abstract

Air pollution continues to be a major public health concern in industrialized cities throughout the world. Recent population and epidemiological studies that have associated ozone and particulate exposures with morbidity and mortality outcomes underscore the important detrimental effects of these pollutants on the lung. Inter-individual variation in human responses to air pollutants suggests that some subpopulations are at increased risk to the detrimental effects of pollutant exposure, and it has become clear that genetic background is an important susceptibility factor. Environmental exposures to inhaled pollutants and genetic factors associated with disease risk likely interact in a complex fashion that varies from one population to another. The relationships between the genetic background and disease risk and severity is often evaluated through traditional family-based linkage studies and positional cloning techniques. Case-control studies based on association of disease or disease subphenotypes with candidate genes may have certain advantages over family pedigree studies, and have become useful for understanding complex disease phenotypes. This is based in part on continued development of quantitative analysis and development of mapping technologies. Linkage analyses with genetically standardized animal models are useful to identify genetic determinants of host responses to environmental stimuli. For example, linkage analyses using inbred mice have identified chromosomal segments (quantitative trait loci, QTL) that contain genes that control susceptibility to the lung inflammatory and immune dysfunction responses to ozone, nitrogen dioxide, zinc oxide, and sulfate-associated particles. Candidate genes within the pollutant susceptibility QTLs have been tested for proof-of-concept using gene-targeting and overexpression models. Importantly, significant homology exists between the human and mouse genomes. Therefore, comparative mapping between the human and mouse genomes should yield candidate susceptibility genes that may be tested by association studies in humans. The combined human studies and mouse modeling will provide important insight to understanding genetic factors that contribute to differential susceptibility to pollutants in human populations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call