Abstract

In contrast to most other organisms, the yeast Saccharomyces cerevisiae can survive without functional mitochondria. This ability has been exploited in genetic approaches to the study of mitochondrial biogenesis. In the last two decades, mitochondrial genetics have made major contributions to the identification of genes on the mitochondrial genome, the mapping of these genes and the establishment of structure-function relationships in the products they encode. In parallel, more than 200 complementation groups, corresponding to as many nuclear genes necessary for mitochondrial function or biogenesis have been described. Many of the latter are required for post-transcriptional events in mitochondrial gene expression, including the processing of mitochondrial pre-RNAs, the translation of mitochondrial mRNAs, or the assembly of mitochondrial translation products into the membrane. The aim of this review is to describe the genetic approaches used to unravel the intricacies of mitochondrial biogenesis and to summarize recent insights gained from their application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call