Abstract

Documented fatalities of bats at wind turbines have raised serious concerns about the future impacts of increased wind power development on populations of migratory bat species. However, for most bat species we have no knowledge of the size of populations and their demographic trends, the degree of structuring into discrete subpopulations, and whether different subpopulations use spatially segregated migratory routes. Here, we utilize genetic data from eastern red bats (Lasiurus borealis), one of the species most highly affected by wind power development in North America, to (1) evaluate patterns of population structure across the landscape, (2) estimate effective population size (Ne), and (3) assess signals of growth or decline in population size. Using data on both nuclear and mitochondrial DNA variation, we demonstrate that this species forms a single, panmictic population across their range with no evidence for the historical use of divergent migratory pathways by any portion of the population. Further, using coalescent estimates we estimate that the effective size of this population is in the hundreds of thousands to millions of individuals. The high levels of gene flow and connectivity across the population of eastern red bats indicate that monitoring and management of eastern red bats must integrate information across the range of this species.

Highlights

  • As concerns about anthropogenic climate change and the long-term environmental impacts of burning of fossil fuels on biological and human systems have heightened, there is increasing motivation to develop alternative sources of energy that will reduce the production of greenhouse gasses

  • The bat species most affected by wind power in North America are migratory, tree-roosting species such as hoary bats (Lasiurus cinereus), eastern red bats (Lasiurus borealis), and silver-haired bats (Lasionycteris noctivagans), which together constitute almost three-quarters of the bat carcasses found at wind turbines (Arnett et al, 2008)

  • We utilize genetic data from eastern red bats (Lasiurus borealis), one of the species most highly affected by wind power development in North America, to (1) evaluate patterns of population structure and whether different subpopulations use spatially segregated migratory routes, (2) estimate effective population size (Ne), and (3) assess signals of growth or decline in population size

Read more

Summary

Introduction

As concerns about anthropogenic climate change and the long-term environmental impacts of burning of fossil fuels on biological and human systems have heightened, there is increasing motivation to develop alternative sources of energy that will reduce the production of greenhouse gasses. Fatalities of bats at wind power installations have emerged as a major environmental impact of wind. The bat species most affected by wind power in North America are migratory, tree-roosting species such as hoary bats (Lasiurus cinereus), eastern red bats (Lasiurus borealis), and silver-haired bats (Lasionycteris noctivagans), which together constitute almost three-quarters of the bat carcasses found at wind turbines (Arnett et al, 2008). Mortalities may occur throughout April to November, most bat fatalities in North America have been reported in late summer and early autumn (reviewed by Kunz et al, 2007; Arnett et al, 2008) and appear to be concentrated during fall migration of the affected species (Cryan, 2003)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.