Abstract
Improving the productivity of secondary metabolites is highly beneficial for the utilization of natural products. Here, we found that gene duplication of the goadsporin biosynthetic gene locus resulted in hyper-production. Goadsporin is a linear azole containing peptide that is biosynthesized via a ribosome-mediated pathway in Streptomyces sp. TP-A0584. Recombinant strains containing duplicated or triplicated goadsporin biosynthetic gene clusters produced 1.46- and 2.25-fold more goadsporin than the wild-type strain. In a surrogate host, Streptomyces lividans, chromosomal integration of one or two copies of the gene cluster led to 342.7 and 593.5 mg/L of goadsporin production. Expression of godI, a self-resistance gene, and of godR, a pathway-specific transcriptional regulator, under a constitutive promoter gave 0.79- and 2.12-fold higher goadsporin production than the wild-type strain. Our experiments indicated that a proportional relationship exists between goadsporin production per culture volume and the copy number of the biosynthetic gene cluster.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.