Abstract

Most bacterial traits involved in colonization of plant roots are yet to be defined. Studies were initiated to identify genes in Pseudomonas which play significant roles in this process. The general approach is to use transposons to construct collections of insertion mutants, each of which is then screened for alterations in its interactions with the host plant. In one study a Tn5 derivative containing a constitutively expressed β-galactosidase (lacZ) gene was used to generate a collection of insertion mutants which could be distinguished from the wild-type parent on X-gal plates. Each mutant was examined for its ability to colonize wheat seedlings in the presence of the wild-type parent. Mutants which gave wild-type:mutant ratio of 20:1 or greater were obtained. In a second study a Tn5 derivative which carries a promoterless lacZ gene located near one end of the transposon was constructed. Expression of the lacZ gene depends on the presence of an active promoter outside of the transposon in the correct orientation. Insertion mutants generated with this transposon were examined for changes in β-galactosidase expression in the presence and absence of plant root exudate. A number of mutants which showed differential lacZ expression have been identified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call