Abstract
In this paper is presented an hybrid algorithm for finding the absolute extreme point of a multimodal scalar function of many variables. The algorithm is suitable when the objective function is expensive to compute, the computation can be affected by noise and/or partial derivatives cannot be calculated. The method used is a genetic modification of a previous algorithm based on the Price’s method. All information about behavior of objective function collected on previous iterates are used to chose new evaluation points. The genetic part of the algorithm is very effective to escape from local attractors of the algorithm and assures convergence in probability to the global optimum. The proposed algorithm has been tested on a large set of multimodal test problems outperforming both the modified Price’s algorithm and classical genetic approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.