Abstract

Parkinson's disease (PD) is a progressive neurodegenerative disorder that is characterized by the degeneration of dopamine (DA) and non-DA neurons, the almost uniform presence of Lewy bodies, and motor deficits. Although the majority of PD is sporadic, specific genetic defects in rare familial cases have provided unique insights into the pathogenesis of PD. Through the creation of animal and cellular models of mutations in LRRK2 and alpha-synuclein, which are linked to autosomal-dominant PD, and mutations in parkin, DJ-1, and PINK1, which are responsible for autosomal-recessive PD, insight into the molecular mechanisms of this disorder are leading to new ideas about the pathogenesis of PD. In this review, we discuss the animal models for these genetic causes of PD, their limitations, and value. Moreover, we discuss future directions and potential strategies for optimization of the genetic models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.