Abstract

Vineyard- and winery-associated lactic acid bacteria (LAB) from two major PDO regions in Greece, Peza and Nemea, were surveyed. LAB were isolated from grapes, fermenting musts, and winery tanks performing spontaneous malolactic fermentations (MLF). Higher population density and species richness were detected in Nemea than in Peza vineyards and on grapes than in fermenting musts. Pediococcus pentosaceus and Lactobacillus graminis were the most abundant LAB on grapes, while Lactobacillus plantarum dominated in fermenting musts from both regions. No particular structure of Lactobacillus plantarum populations according to the region of origin was observed, and strain distribution seems random. LAB species diversity in winery tanks differed significantly from that in vineyard samples, consisting principally of Oenococcus oeni. Different strains were analysed as per their enological characteristics and the ability to produce biogenic amines (BAs). Winery-associated species showed higher resistance to low pH, ethanol, SO2, and CuSO4 than vineyard-associated isolates. The frequency of BA-producing strains was relatively low but not negligible, considering that certain winery-associated Lactobacillus hilgardii strains were able to produce BAs. Present results show the necessity of controlling the MLF by selected starters in order to avoid BA accumulation in wine.

Highlights

  • In winemaking, a secondary fermentation known as malolactic fermentation (MLF) often takes place following the cease of yeast activity

  • As a matter of fact, wines containing elevated amounts of histamine are rejected from certain markets due to recommended or suggested existing limits [4], while recently the Panel on Biological Hazards of the European Food Safety Authority (EFSA) released a scientific opinion on risk based control of biogenic amines (BAs) formation in fermented foods [5]

  • The present study shows that the lactic acid bacteria (LAB) species richness and population densities on grapes may differ considerably between regions or vineyards

Read more

Summary

Introduction

A secondary fermentation known as malolactic fermentation (MLF) often takes place following the cease of yeast activity. During MLF, L-malate is converted into L-lactate by the lactic acid bacteria (LAB) of wine. This bioconversion is a desirable process in red winemaking and in the production of certain white wines of high acidity, due to the organoleptic advantages that LAB activity confers. These include a decline in the total acidity and an increase of soft mouth feel, flavour, and microbiological stability of the wine [1]. MLF in wine needs to be regulated to avoid the accumulation of BAs by LAB. This may be accomplished by the use of selected LAB strains tested for low production of BAs [6, 7] or able to degrade BA in wine [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call