Abstract

H3N8 influenza virus strains have been associated with infectious disease in equine populations throughout the world. Although current vaccines for equine influenza stimulate a protective humoral immune response against the surface glycoproteins, disease in vaccinated horses has been frequently reported, probably due to poor induction of cross-reactive antibodies against non-matching strains. This work describes the performance of a recombinant protein vaccine expressed in prokaryotic cells (ΔHAp) and of a genetic vaccine (ΔHAe), both based on the conserved stem region of influenza hemagglutinin (HA) derived from A/equine/Argentina/1/93 (H3N8) virus.Sera from mice inoculated with these immunogens in different combinations and regimes presented reactivity in vitro against highly divergent influenza virus strains belonging to phylogenetic groups 1 and 2 (H1 and H3 subtypes, respectively), and conferred robust protection against a lethal challenge with both the homologous equine strain (100%) and the homosubtypic human strain A/Victoria/3/75 (H3N2) (70–100%). Animals vaccinated with the same antigens but challenged with the human strain A/PR/8/34 (H1N1), belonging to the phylogenetic group 1, were not protected (0–33%). Combination of protein and DNA immunogens showed higher reactivity to non-homologous strains than protein alone, although all vaccines were permissive for lung infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.