Abstract

Genetic variation of pigment composition was studied in 16 different strains of Emiliania huxleyi (Lohm.) Hay et Mohler in batch culture. Distinct strain-dependent differences were found in the ratios of fucoxanthin, 19'-hexanoyloxyfucoxanthin, and 19'-butanoyloxyfucoxanthin, hampering the use of these individual pigments as a taxonomic marker at the species level. The molar ratio of total carotenoids to chl a, however, was constant for all strains tested. In addition, the pigment composition of one axenic strain (L) of E. huxleyi at different growth rates in light-, nitrate-, and phosphate-limited continuous cultures was analyzed quantitatively. The pigments fucoxanthin and 19'-hexanoyloxyfucoxanthin correlated closely under all conditions. From steady-state rate calculations, it is hypothesized that 19'-hexanoyloxyfucoxanthin is synthesized from fucoxanthin, with light as a modulating factor. The net rate of synthesis of diatoxanthin depended both on the concentration of diadinoxanthin (its partner in the xanthophyll cycle) and on light, illustrating its photoprotective function in the xanthophyll cycle. In axenic strain L, the ratio of total fucoxanthins to chl a correlated strongly with photon flux density and can potentially be used to assess the physiological status with respect to irradiance in field populations. In multispecific bloom situations, the ratio of diadinoxanthin plus diatoxanthin to total fucoxanthins could be used as an alternative indicator for the light-dependent physiological state of E. huxleyi, provided that no other chromophytes are present. Application of these correlations to mesocosm data from the literature has so far provided no evidence that E. huxleyi blooms form only at inhibiting light levels, as previously suggested.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.