Abstract
Successful bioaugmentation requires that bacterial strains introduced into the polluted area must be able to adapt to new environmental conditions and retain high enough catabolic activity. The strains should degrade pollutant present at high concentrations, while having high affinity for the pollutants for their thorough degradation. The transfer of genetic information from introduced donor strain to indigenous bacterial population increases the biodegradation potential. As laboratory-selected strains can be poor survivors and lose catabolic activity in mixed microbial ecosystems, the indigenous biodegradative strains isolated from the river water continuously polluted with phenolic compounds of oil shale leachate may serve as inoculants for bioaugmentation. We have shown that the native phenol- and p-cresol-degrading community could be grouped according to the presence of catabolic genes involved in catabolism of aromatic compounds. The selected representative strains of different catabolic types of degradation of phenol and p-cresol were identified as Pseudomonas mendocina (strain PCl) and P. jluorescens (strains PC! 8, PC24). Catabolic potential of these strains was studied on the basis of phenol hydroxylase, p-cresol methylhydroxylase and catechol 2,3-dioxygenase genes. The occurrence and conjugation of plasmid DNA were revealed in these strains. The ability of the selected strains to degrade several phenolic compounds in natural phenolic wastewater in which the compounds were present in multicomponent mixtures, was investigated through laboratory microcosm studies, To elucidate the extent of interactions among the used bacterial strains single and mixed cultures were set up. The biodegradation activity of strains in microcosms was examined through viable counts, consumption of phenolic compounds and detecting the presence of catabolic genes by hybridization, During the experiments (30 days) the introduced bacteria remained viable even when the substrates were depleted. The mixture of strains was more effective in the decomposition of phenolic compounds from the natural wastewater as compared with the single culture conditions and the metabolic activity and cell density of each strain were co-ordinated within a specific time scale. The behaviour of strains in the phenolic leachate depended on the growth kinetics of the strains (K,,µ).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.