Abstract

Analysis of six Shigella flexneri and four S. sonnei isolates with trimethoprim (Tp) resistance from clinical cases in Ontario has shown that, in all isolates, the Tp resistance is mediated by gene(s) on conjugative, multiple antibiotic-resistance plasmids. The physical and genetic characterization of these plasmids revealed that there are three different Tp resistance plasmids. One group, composed of all six S. flexneri plasmids, consists of plasmids which are about 70 megadaltons (MDa) and inhibit the fertility of an Escherichia coli Hfr strain (Fi+). A representative member of this group, pPT4, demonstrates a weak incompatibility reaction with IncFl plasmid R455-2. Another group, three of the four S. sonnei plasmids, contains plasmids which are about 43 MDa, Fi-, and mediate propagation of phage PRD1. The third group, the remaining S. sonnei plasmid, is 53 MDa, fi+, mediates propagation of phages fd and MS2, and is incompatible with IncFII plasmid R100. These plasmids also have been differentiated by restriction endonuclease fragment profiles. Analysis of pPT4 has revealed that the Tp resistance of this plasmid is transposable. The transposon, Tn536, is different from previously described Tp resistance transposons; it is 16 MDa, and in addition to Tp, it encodes resistance to mercuric chloride ions, spectinomycin, streptomycin, and sulfonamides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.