Abstract

A number of candidate gene and genome-wide association studies have identified significant associations between single nucleotide polymorphisms, particularly in FTO and MC4R, and body weight. However, the association between copy number variation and body weight is less understood. Anabolic androgenic steroids, such as testosterone, can regulate body weight. In humans, UDP-glucuronosyltransferase 2B17 (UGT2B17) metabolizes testosterone to a metabolite, which is readily excreted in urine. We investigate the association between genetic and phenotypic variation in UGT2B17 and body weight. UGT2B17 deletion was genotyped and in-vivo UGT2B17 enzymatic activity (as measured by the 3-hydroxycotinine glucuronide to free 3-hydroxycotinine ratio) was measured in 400 Alaska Native individuals and 540 African Americans. In Alaska Native people, UGT2B17 deletion was strongly associated with lower BMI in male individuals (P<0.001), but not in female individuals, consistent with testosterone being a male dominant steroid. The sex-specific association between UGT2B17 deletion and lower BMI was also observed in African Americans (P=0.01 in male individuals). In both populations, UGT2B17 deletion was significantly associated with lower measured in-vivo UGT2B17 activity. In male individuals, lower in-vivo UGT2B17 activity was associated with lower BMI, as observed in the sex-specific genotypic association. These data suggest that UGT2B17 deletion leads to reduced UGT2B17 activity, and lower BMI in male individuals. This is consistent with the hypothesis that reduced UGT2B17-mediated testosterone excretion results in higher testosterone levels. Future studies could confirm this hypothesis by directly measuring serum testosterone levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.