Abstract

The economic efficiency of mink production is greatly influenced by reproductive performance. Therefore, the objective of this study was to estimate phenotypic and genetic parameters for reproduction traits including total number of kits born (TB), number of live kits at birth (LB), number of live kits at weaning (LW), survival rate at birth (SB), survival rate at weaning (SW), gestation length (GL), average kit weight per litter at birth (AWB), average kit weight per litter at week 3 (AW3), and average kit weight per litter at weaning (AWW) in American mink. Data included records of 3,046 litters collected by the Canadian Centre for Fur Animal Research at Dalhousie Faculty of Agriculture between 2002 and 2016. Significance (P < 0.05) of fixed effects (year, number of matings, color type, age of dam, origin of dam, sex ratio, and number of live kits) and random effects of permanent environment were determined using univariate repeatability models. A significant effect of permanent environment was only found for survival rate traits (P < 0.05). Subsequently, genetic and phenotypic parameters for all traits were estimated by fitting a set of bivariate models using ASREML 4.0. Heritabilities (± SE) were estimated to be 0.07 ± 0.03 for TB, 0.07 ± 0.02 for LB, 0.09 ± 0.04 for LW, 0.13 ± 0.03 for SB, 0.10 ± 0.02 for SW, 0.29 ± 0.03 for GL, 0.28 ± 0.05 for AWB, 0.19 ± 0.04 for AW3, and 0.10 ± 0.04 for AWW. Moderate positive genetic correlation was observed between AWB with SB (0.66 ± 0.10) and SW (0.61 ± 0.13). Furthermore, genetic correlations of LB with SW and AWB were 0.55 ± 0.16 and 0.53 ± 0.18, respectively. On the other hand, negative and moderate genetic correlations were observed between GL and survival rates at birth (-0.43 ± 0.14) and at weaning (-0.37 ± 0.15). These results indicated that selection for higher litter weights at birth can effectively improve survival rate and number of live kits in mink farms. It was suggested to incorporate litter weight traits as a selection criterion to increase maternal ability in mink breeding programs. Unfavorable genetic trends were observed for the studied traits indicating that phenotypic selection with low selection intensity had not been an efficient method to improve them over the last 10 yr. It was recommended to use genetic or genomic evaluation methods for mink selection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call